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A complete semi-analytical solution is given for second-order diffraction of monochro- 
matic waves by a truncated vertical circular cylinder in water of uniform finite depth. 
The methodology presented in detail elsewhere (Eatock Taylor & Huang 1996) is 
adopted to find a particular solution which exactly satisfies the governing equa- 
tion, the inhomogeneous free-surface condition and the seabed condition. In order 
to satisfy the boundary condition on the cylinder bottom, the fluid domain around 
the cylinder is divided into two regions. First- and second-order velocity potentials 
are described separately in the two regions and matched on the interface by the 
pressure and normal-velocity continuity conditions. Based on the formulation, the 
second-order wave field in the vicinity of the cylinder and the corresponding wave 
forces and overturning moments on the cylinder are studied in detail. Numerical 
results for the double frequency forces obtained by using the present semi-analytical 
approach are compared with those computed with a higher-order boundary element 
method (Eatock Taylor & Chau 1992). As well as the exact solution, an approximate 
solution is also given for the second-order potential and the corresponding forces. 
Numerical results show that the approximate solution possesses excellent accuracy for 
the total second-order heave force over a wide range of conditions. When kb > 1.2 
(where k ,  b are the incident wavenumber and the draught of the cylinder respec- 
tively), the accuracy for total second-order surge force and pitch moment is also 
satisfactory. These results could lead to the development of very efficient solutions 
and corresponding algorithms for the analysis of second-order wave diffraction by 
more complicated structures such as tension leg platforms. Numerical results based 
on the present solution show that in many cases, both the first- and the second-order- 
free surface elevation in the vicinity of a truncated cylinder is very close to that of a 
bottom-seated cylinder. For waves with larger amplitudes, the maximum free-surface 
elevation around a vertical cylinder predicted with the second-order theory can sig- 
nificantly exceed that given by linear theory. There is also a considerable difference in 
the location of the maximum elevation predicted by the linear and nonlinear theories. 

1. Introduction 
There has been, in recent years, a considerable number of investigations into 

nonlinear interactions between water waves and ocean structures, based on potential 
flow theory. Theoretical approaches to the problem have been mainly based on a 
perturbation procedure, combined with the boundary-element method. Up to second- 
order of accuracy, significant progress has been made in this context (see, for example, 
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Chau 1989; Kim & Yue 1989, 1990; Eatock Taylor & Chau 1992; Chen & Molin 
1991; Lee et al. 1991). The biggest advantage of the boundary-element method (BEM) 
is that it can handle wave diffraction by three-dimensional structures of complicated 
geometry. There are, however, still some problems associated with a boundary element 
method (BEM) approach: the accuracy of numerical results has a strong dependence 
on the mesh density and the element shape. Furthermore, for complex geometries, 
converged second-order results are not easy to obtain and programs based on a BEM 
implementation at second order are usually very time-consuming to run. Since the 
coefficient matrix associated with the boundary element method sometimes may be ill- 
conditioned, special techniques are needed in order to avoid the ‘irregular frequency’ 
problem (e.g. Lee & Sclavounos 1989). In view of these problems, analytical or 
semi-analytical solutions can be very useful in providing ‘bench marks’ to test the 
numerical methods. Indeed, for some simpler cases such as cylindrical structures or 
structures in which cylinders play the major part in diffracting waves, semi-analytical 
solutions could in principle be used instead of fully numerical methods (for example, 
by adopting an interaction theory). This may offer a powerful tool for designers, since 
analytical (or semi-analytical) solutions normally take only a fraction of the CPU 
time and computer memory as compared with a fully numerical method. This has 
proved to be very successful for first-order diffraction problems (e.g. Mclver & Evans 
1984; Kagemoto & Yue 1986; Linton & Evans 1990). Nevertheless, to the authors’ 
knowledge, apart from the simple case of a bottom-seated vertical cylinder extending 
through the whole water depth (e.g. Kriebel 1990, 1992; Chau & Eatock Taylor 
1992), complete semi-analytical solutions to the second-order velocity potential do 
not appear to exist. Instead, use has been made of the indirect method proposed by 
Lighthill (1979) and Molin (1979) to estimate second-order wave loads on a single 
or multiple cylinders. Eatock Taylor & Hung (1987), for example, presented a semi- 
analytical solution to the second-order wave loads on a bottom-seated vertical circular 
cylinder; while Williams and his co-authors made a systematic study of the second- 
order wave loading on both single and arrays of vertical cylinders. Comprehensive 
results in terms of the total forces on the structures have been obtained (Abul-Azm & 
Williams 1988, 1989a,b; Williams, Abul-Azm & Ghalayini 1990; Ghalayini & Williams 
1991; Moubayed & Williams 1994, 1995). With the indirect method, however, one 
cannot obtain the second-order free-surface elevation and the wave run-up on the 
waterline, which are also important quantities in the design of a floating production 
system such as a tension leg platform. Another slight disadvantage of the indirect 
method is that in order to obtain the wave loads associated with different degrees 
of freedom (e.g. surge, heave, pitch and sway), one has to use different auxiliary 
radiation potentials. An alternative approach, for the approximate calculation of 
second-harmonic vertical forces, is based on the asymptotic analysis developed by 
Newman (1990) for large depths. This has been implemented by Kim (1993) as a tool 
for preliminary design of deep-draught multi-column structures. 

Recently, in connection with the direct solution of the boundary-value problem for 
the second-order potential, Eatock Taylor & Huang (1996) developed a method for 
obtaining a particular solution for an axisymmetric structure in regular waves. The 
resulting solution has been shown to satisfy exactly the inhomogeneous free-surface 
condition at second order. In this paper, we make use of this methodology to find 
a particular solution for second-order diffraction by a truncated vertical circular 
cylinder. Since the particular solution has exactly satisfied the inhomogeneous free- 
surface condition, the eigenfunction expansion method can then be utilized to find the 
component of the second-order diffraction potential which satisfies a homogeneous 
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free-surface condition. A combination of these two components allows all of the 
boundary conditions to be satisfied. The solution is analytical in the vertical and 
circumferential directions, based on appropriate eigen-function and Fourier series 
expansions. There remains a free-surface integral which is now one-dimensional. In 
the near field, this integral is evaluated numerically, while in the far field an explicit 
analytical expression can be obtained (Kim & Yue 1989; Chau & Eatock Taylor 1992). 
Numerical results are given for the second-order wave loading and the free-surface 
elevation around truncated cylinders. Effects of different factors are investigated in 
some detail, and comparisons made with results for bottom-seated cylinders in the 
same water depth. 
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2. Formulation of the velocity potential 
2.1. DeJnition of the boundary-value problem 

We consider the diffraction of a monochromatic incident wave, of frequency o, 
wavenumber k and linear amplitude A,  by a truncated vertical circular cylinder 
of radius a and draught 6,  fixed in water of depth h (see figure 1). Assuming an 
irrotational flow, we define the velocity potential of the wave field, @(r, 8, z, t )  in a 
cylindrical polar coordinate system, such that the z-axis coincides with the cylinder 
axis, originating from the quiescent free surface and pointing upwards. Using the 
conventional Stokes perturbation procedure, we express @(r,  8, z ,  t )  as 

(2.1) 

where E = kA. The steady part of the second-order potential, $(2), is subsequently 
neglected, since its contribution to the wave force and the free-surface elevation is at 
most 0(e3).  

We then divide the fluid domain into two regions: an exterior region (region 
1)  defined by a < r < 00, 0 < 8 < 271, -h < z < 0, and an interior region 
(region 2) defined by 0 < r < a, 0 d 8 < 2n, -h < z < 4. The potentials 4:) 
( p  = 1,2; j = 1,2; the superscript denoting the order of perturbation and the subscript 
denoting the number of the flow region) satisfy the following Laplace equation and 
corresponding boundary conditions: 

@(r,  8, z ,  t )  = Re{ 4( ' ) ( r ,  8, z)e-iwt + 4(2 ) ( r ,  8, z)e-2iwt} + p ' ( x , y ,  z) + 0 ( e 3 )  

V2#')(r, 8, z )  = 0 in the fluid domain, (2.2) 
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where v = 0 2 / g ,  g is the gravitational acceleration, and the wavenumber k satisfies the 
dispersion equation k tanh(kh) = v. q is the second-order forcing function determined 
by the first-order potential: its form is given below. 

We use the pressure and normal-velocity continuity conditions to match the exterior 
and the interior regions. This leads to 

a'?) r = a ,  - b < z < O  
(2.8) -- 

ar - { :'F)/ar, r =a,  -h < z < -b, 

&'(a, 6,  Z) = '$"(a, 6 ,  z), -h < z < -b, (2.9) 
where p = 1,2. Equations (2.2) to (2.9), plus an appropriate radiation condition for 
'?) (which will be discussed in §2.3), define a complete boundary-value problem for 
the velocity potentials '(l), 4(2). 

2.2. First-order potential '(l) 
An accurate and fast evaluation of the first-order diffracted potential is essential for 
obtaining the second-order diffracted potential. In the case of a truncated vertical 
circular cylinder, the analytical solution can be obtained using the eigenfunction 
expansion method. The procedure was described by Garrett (1971) in his analysis 
of the first-order wave forces on a circular dock, and therefore we will only briefly 
address it here. 

Appropriate expressions for the first-order velocity potentials in the exterior and 
interior regions are as follows. In the exterior region the lytential '(I) can be 
expressed as the sum of the first-order incident potential q5i and the first-order 
diffracted potential (by!. The former can be written 

m igA cosh(k(z + h)) 
o cosh(kh) 

'!" = -- eninJn(kr) cos(n6), 
n=O 

(2.10) 

where €0 = l,cn = 2 for n > 0. The latter can be decomposed into one part q5y& 
corresponding to diffraction of the incident wave by a bottom-seated vertical cylinder; 
and a second part 4jl:12 required to enforce the appropriate conditions at r = a. Thus 

(2.11) 
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leading to 

where 

(2.13) 

(2.14) 

Here H,(x )  is the nth Hankel function of the first kind. 

are the real roots of the dispersion equation: 
Furthermore, ma = k is the wavenumber of the incident wave, and mi, j = 1,2,3,. . ., 

m j  tan(mjh) = -v. (2.17) 

while the second The term P,(kr)  incorporates the contributions from q5{') and 
summation in (2.12) represents 4yl!2. 

In the interior region, 

4:) = x[x ~,A)tjTl,(ljr)cos(li(" + h))] cos(nO), 
n=O j = O  

where 

(2.18) 

(2.19) 

i. - - jn/(h - b).  (2.20) 

One of the ways of obtaining the linear systems which determine Bj:) and A::) is 
to use the eigenfunction expansion approach in (-h < z < 0). Substituting (2.12) and 
(2.18) into (2.8) and (2.9), we have 

{B:')) = [G 1) I{ A(') n )> (2.21) 

(2.22) 
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In the above equations, {BL')) and (A;')} are column vectors of the unknowns, and 
{Eil)] is a known column vector. [Ci')], [D;')] are matrices of known coefficients, with 
the subscript n denoting the nth Fourier mode. Expressions for the matrices Ci'), Dil) 
and the vector EL1) are given in Appendix A. It is implied throughout that the infinite 
series have been truncated appropriately, the issue of convergence being addressed in 
the section on results. 

2.3. Decomposition of the second-order potential in the exterior region 
In the exterior region, the second-order potential 
second-order incident potential 4j2) and second-order diffracted potential 4;) 

can be expressed as the sum of 

#+, 8, Z )  = @+, 8, Z )  + q#)(r, 8, Z )  (2.27) 

where 

(2.28) 

We decompose 4;) into three parts. These correspond to a 'free wave' component 
due to diffraction of the second-order incident wave by a bottom-seated cylinder, a 
'free-wave' component required to enforce the appropriate conditions at r = a, and a 
'locked wave' due to the first-order forcing on the free surface. Thus 

& ) ( r , W  = +;:I + 4;:2 + 4g3. (2.29) 

4:;' and $$I2  satisfy the following homogeneous condition on the free surface: 

(2.30) 

c$$!3 satisfies the inhomogeneous free-surface condition obtained from (2.7), where 

(2.31) 

It is convenient to express each 4g!j ( j  = 1,2,3) in the following general form: 

4(2) d1, j  - - wj(r, 8, Z )  + C en cos(n8) C wmn,j(krnr)zm(krn, z). (2.32) 

wj(r, 8, z )  are known functions corresponding to the jth component, which is defined 
as 

m 00 

n=O m=O 

j = 1,2, 
wj(r, 8, Z )  = cosh(k(z + h)) (2.33) d r , O  j = 3. { O' v cosh(kh) 
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Wmn,j are functions to be determined and the Z,(k,, z )  are in each case eigenfunctions 
defined in (2.15) and (2.16). Now, however, the wavenumbers ko, k ,  ( m = 1,2,. . .) are 
the real roots of the dispersion equations 

ko tanh(k0h) = 4v, k ,  tan(k,h) = -4v. 

We also specify the radiation condition at r -+ cc which is to be satisfied by each 
unknown function W,,,,,j(k,r) as 

2.3.1. Second-order ‘jke waue’ component &/,l 

The boundary condition at r = a for q5g:l is taken as 

(2.34) 

(2.35) 

This condition is identical to that for a bottom-seated vertical circular cylinder of 
height h. Therefore 4$!, can be readily written as (e.g. Eatock Taylor & Huang, 1996) : 

3iA20 2kJi(2ka) 
8 sinh4(kh)’ Qn = ___ 

(2.36) 

(2.37) 

where 
2k sinh(2kh) + 4v cosh(2kh) 2k sinh(2kh) - 4v cosh(2kh) 

4k2 + k i  

has satisfied the governing 

a0 = 9 am = 4k2 - k i  

U,(k,r) is the function defined in (2.14). We see that 
equation and all the specified boundary conditions. 

2.3.2. Second-order ‘locked wave’ component q5g:3 
Based on the theory developed by Eatock Taylor & Huang (1996), a general 

expression for a particular solution to the second-order wave diffraction by an 
axisymmetric structure can be written as 

O D m  

4$$-, 0, Z )  = w(r, 8, Z )  + C 1 e n ~ , ( r ) ~ m ( k , ,  Z) cos(ne), (2.38) 

where the first term on the right-hand side is defined in (2.33); Z,(k, ,z)  are eigen- 
functions defined in (2.15) and (2.16); and Rmn(r) are the functions identified as Wmn,3 
in (2.32), yet to be obtained. IC satisfies the dispersion equation 

K tanh(lch) = 5v. (2.39) 

The above solution for q5f& is defined in the region a < r < +a, 0 < 0 < 
2n, -h < z < 0. It is clear that 4$:3 has exactly satisfied the inhomogeneous free- 
surface condition and the sea-bottom condition. Naturally, $(& is requried to satisfy 

n=O m=O 
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Laplace’s equation. This leads to 
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where 

(2.41) 
cosh(K(z + d ) )  

v cosh(Kd) * 

qn(r) is the nth Fourier mode of the forcing function q(r,8), and the +_ is taken to 
be + when m = 0 and - when m > 0. Again, using the eigenfunction-expansion 
technique in the z-direction, we obtain 

where 
cosh K ( Z  + d) 

Zm( z)dz. Am = 1 v cosh(lcd) (2.43) 

We now let Gmn(r) = Gfl +A,q,(r).  Equation (2.42) can be rearranged into an 

(2.44) 

inhomogeneous Sturm-Liouville ordinary equation of the form 

U Y ( X ) )  + 4(x) = 0 

with 
d2 dp d 

dx2 dxdx + q  =p(x)-- + -- +q(x). (2.45) 

In the present case, 

P = r, 

with 
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2.3.3. Second-order 'jiree wave' component 4g!2 

potential in the interior region &)(r, 0, z) have the forms 
The expressions for 4&(r, 0, z) in the exterior region and the total second-order 

co m 

&(r, 0,z) = C E ,  cos(n0) ( x A ! A V n ( J m r )  cos(lm(z + h))\ , (2.50) 
n=O I w1=0 I 

where lm and V,(l,r) are defined in $2.2. 
Using the continuity conditions (2.8) and (2.9), we can obtain 

a m 

CA~Al/,(i,a)cos(i,(z + h)) = & ) ( u , z )  + C B ( 2 ) w Z j ( k j , z ) ,  J n  U;(kja) (2.52) 
m=O j =O 

where 
4b','(a, Z) = (4i2' + 4:),1+ 4 $ ! 3 ) n ,  (2.53) 

subscript n denoting the nth Fourier mode of the corresponding second-order potential 
components. It can be shown that corresponds to the complete second-order 
potential for a bottom-seated vertical circular cylinder, described in Chau & Eatock 
Taylor (1992). 

2.4. Solution for  the coeficients 
Using the above conditions and the eigenfunction expansion method, we can derive 
expressions for At i  and BCi in a similar manner to the solution for the coefficients 
of the first-order potentials. Analogous to (2.21) and (2.22) we obtain 

( B p }  = [c;2)](Ay}, (2.54) 

(2.55) (&)} = [ D 9 ( B p }  + { E y } ,  
where 

( B : ~ ) }  = (@A), { A ( , ~ ) }  = (A!!), m = 0, I, 2,. . . , n = 0,1,2,. . . , (2.56) 

cos(i,(z + h))Zj(k,, z)dz, (2.57) 
-b 

(2.58) 

Ei2)(m) = [r qj:)(a, z) cos(l,(z + h))dz. (2.59) 

Each of these definitions holds for j = 0,1,. . . and m = 0,1,. . . with A0 = 0, though 
in the numerical implementation the ranges are of course truncated. More detailed 
expressions for [DL2)], [Ci2)] and (Ei2)}  are given in Appendix B. 



180 

3. Forces, moments and free-surface elevation 

The first-order pressure is 
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3.1. First-order forces 

p(')(r ,  8, z ,  t) = Re{ipw4r)(r, 8, z)e-'"'}. 

The first-order wave elevation in the exterior region is 

The first-order surge force is 

The first-order vertical force is 

F;')(t) = Re { iope-imt 1' &)(r, 8, -b)rdrdO . 1 (3.4) 

Upon substituting the expression for &) into (3.4), we obtain 

3.2. Second-order forces 
The second-order forces can be decomposed into several components (see, for example, 
Eatock Taylor & Hung 1987; Kim & Yue 1989), namely the second-order mean force, 
the force due to the quadratic contribution of the first-order potential and the force due 
to the contribution of the time-varying second-order potential. Explicit expressions 
for various second-order components are given in the following subsections. 

3.2.1. Mean second-order forces and moments 
The mean surge force is 

= Re@/ + Fr?}, (3.6) 
where SB denotes the body surface and WO denotes the waterline. We obtain 

where 
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and 

The pitch moment about an axis through the base of the cylinder (z = 4) is 

181 

(3.9) 

(3.10) 

The heave force is 

where 

3.2.2. Second-order quadratic forces and moments 
The quadratic component of the surge force is 

= Re{(FZ:, + Fz:2)e-2ior}, 

where 

(3.12) 

(3.13) 

(3.15) 

The quadratic component of the pitch moment is 

4 Y J  q x J  
M'$ = Re{(M'2) + F(2)  b)e-2iwr), 

where 

The quadratic component of the heave force is 

(3.16) 

(3.17) 

(3.18) 
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3.2.3. Forces and moments due to second-order potential 
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The contribution of +(2) to the surge force is 

The pitch moment contribution is 

The heave force contribution is 

3.3. Free-surface elevation 
The second-order free-surface elevation can also be decomposed into three parts: 
the second-order mean component, the second-order quadratic component and the 
component due to the time-varying second-order potential. We therefore write the 
elevation as follows : 

c(2)(r,  8, t )  = Re([qr) + qy)]e-2iwf + $2)}, (3.22) 

where 

(3.23) 

(3.24) 

2io 
g 

qf)(r, e) = -[&I + +?)11~=~. (3.25) 

These are the complete expressions based on the exact solution of the boundary value 
problem. 

4. Approximate solution to second-order potentials and forces 
Many ocean structures such as tension leg platforms (TLPs) have a rather com- 

plicated geometry, which makes the corresponding nonlinear hydrodynamic analysis 
difficult. At second order, the boundary-element approach is usually expensive. In the 
case of multi-column structures such as TLPs, however, we can investigate whether 
under relevant practical conditions the dominating contribution to the diffracted 
potential, either first or second order, comes from the upper part of the structure 
consisting of the vertical cylinders. Great advantage could be obtained by exploiting 
such an assumption. In this section, we give an approximate solution to the second- 
order potential and corresponding forces on a truncated circular cylinder, aimed at 
providing an efficient approach to nonlinear hydrodynamic analysis of complicated 
structures such as TLPs. 
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The basic assumption here is that for 'deep draught' structures, the lower part of 
the structure will make little contribution to the diffracted potential. In effect, we 
assume that the contributions 4$)2 in (2.11) and 4$:2 in (2.29) are negligible. As 
is shown in the numerical results of 95, this approximation is reasonable even for 
structures with moderate draught. By neglecting the contribution of the lower part, 
we assume that the diffracted potential induced by a truncated cylinder is the same 
as that for a bottom-seated surface-piercing cylinder with the same diameter and in 
the same water depth. Hence, in the exterior region in the truncated cylinder problem, 
the total second-order potential is approximated by 

(4.1) 

Expressions for Qn and a, are given in 92.3.1. 
Since this solution corresponds to the exterior region outside the vertical cylinder, 

we cannot directly obtain the second-order vertical force on the cylinder. To do so 
we extend this solution to the interior region where the total second-order potential 
only consists of the free-wave component. The form of the potential in the interior 
region is given by (2.50). By matching that expression with (2.27), using the continuity 
condition for the total second-order potential, we obtain a decoupled expression for 
{A(,2)) : 

{A!:)} = {EL2)}.  (44 
The expressions for EA2) are given in (2.59) and Appendix B. 

It can be seen that the above approximate solution has a very simple form, for 
which efficient and reliable algorithms now exist (Chau & Eatock Taylor 1992; Eatock 
Taylor & Huang 1996). Based on these simplifications, analytical expressions for the 
mean and quadratic components of second-order surge and pitch forces acting on 
the cylinder are derived and given in Appendix C. These expressions are analogous 
to those given in Appendix B of Kim & Yue (1989). In their expressions, the 
integration is carried out over the whole length of the bottom-seated cylinder, while 
in our expressions only the upper part corresponding to the surface of the truncated 
cylinder is retained in the integrals. The expressions for second-order dynamic loads 
due to the contribution of the approximated second-order potential can be obtained 
from those in (3.19)-(3.21), simply by putting B!/ = 0, m = 0,1,2,. . .. 

5. Numerical results and discussion 
5.1. Convergence of the solution 

In order to ensure that the numerical results are reliable, we first test the convergence 
of the semi-analytical method and the corresponding computer program. There are 
two parameters which influence the accuracy of the calculation: the number of 
Fourier modes N and the number of eigen modes M .  In our numerical algorithm, N 
is determined by a truncation-error tolerance, which is set at E = Thus for a 
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h / a  = 10.0 15.0 25.0 
M = 50 ( 0.5603, 0.4392) ( 0.5537, 0.4573) ( 0.5573, 0.4309) 

FL2) M = 100 ( 0.5602, 0.4390) ( 0.5535, 0.4551) ( 0.5585, 0.4321) 
M = 150 (0.5602, 0.4389) ( 0.5535, 0.4559) (0.5582, 0.4310) 
M = 50 ( -0.0039, -0.3822) ( -0.0030, -0.3865 ) 

M = 100 ( -0.0039, -0.3822) ( -0.0030, -0.3865 ) 
( -0.0046, -0.3816) 
( -0.0046, -0.3816) 

M = 50 ( 0.3147, -0.1900) ( 0.3159, -0.1840) ( 0.3132, -0.1924) 
M f )  M = 100 ( 0.3147, -0.1897) ( 0.3158, -0.1857) ( 0.3143, -0.1923) 

M = 150 ( 0.3147, -0.1894) ( 0.3159, -0.1850) ( 0.3141, -0,1931) 

Fj2) 

TABLE 1. Convergence of real and imaginary parts (real, imag) of total second-order forces (surge, 
heave, pitch) for different numbers ( M )  of eigen modes. Forces and pitch moment (with respect to 
the cylinder bottom) are normalized by pgaA2 and pgaA2b respectively ( ka = 0.8, b/a  = 4.0). 

ka = 0.5 1.5 2.5 
M = 50 ( 0.4062, -0.0337) ( 2.4470, 0.4390 ) ( 0.0426, -3.9426) 

M = 100 ( 0.4062, -0.0360 ) ( 2.4469, 0.4390 ) ( 0.0426, -3.9424 ) 
FL2) M = 200 ( 0.4062, -0.0278 ) ( 2.4469, 0.4390 ) ( 0.0426, -3.9424 ) 

M = 250 ( 0.4062, -0.0275 ) (2.4469, 0.4390 ) ( 0.0426, -3.9424 ) 
M = 50 ( -0.0580, -0.2196 ) ( -0.2456, -0.1132) ( -0.1503, 0.4045 ) 

Fi2’ M = 100 (-0.0580, -0.2196 ) (-0.2456, -0.1132 ) (-0.1503, 0.4046 ) 

M = 50 ( 0.3073, -0.4120, ) ( 1.4527, 0.0935 ) (-0.1455, -2.5346 ) 
Mf) M = 100 ( 0.3073, -0.4130 ) ( 1.4529, 0.0936 ) (-0.1454, -2.5349 ) 

M = 200 ( 0.3073, -0.4123 ) ( 1.4529, 0.0936 ) (-0.1454, -2.5349 ) 
M = 250 ( 0.3073, -0.4129 ) ( 1.4529, 0.0936 ) (-0.1454, -2.5349 ) 

TABLE 2. Convergence of real and imaginary parts (real, imag) of total second-order forces (surge, 
heave, pitch) for different numbers ( M )  of eigen modes. Forces and pitch moment (with respect to 
the cylinder bottom) are normalized by pgaA2 and pgaA2b respectively ( h/a  = 20, b / a  = 4.0). 

summation C:=O yn, N is the smallest value such that 

In general, N = 12 is sufficient for most cases. For this reason it is only the influence 
of M which is examined here. Table 1 illustrates the convergence characteristics for 
a given ka and varying non-dimensional water depth kh; while table 2 shows the 
characteristics with respect to variation of ka for a given h/a. In both cases the 
convergence is satisfactory, and the results show that this has little dependence on 
either ka or kh. We have also carried out many other computations (not presented 
here), the results of which confirm that the solution possesses very good convergence 
characteristics. Even for very deep water (kh > 20), M = 100 can yield an accuracy 
higher than 99%, over the entire range of ka which is of interest. We believe that this 
is because in our solution both first-order and second-order potentials are expressed 
as sums of components corresponding to a bottom-seated cylinder, with the same 
radius and water depth, and a correction term due to the truncation of the cylinder. 
The contribution of the correction term to the velocity potential on the free surface 
is small in comparison with the leading term, yielding good computational features. 
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ka = 0.8 1.2 2.0 
F$) Semi-analytical (-0.4425, -1.4746 ) (-1.4356, -0.7970 ) (-1.3530, 0.7652 ) 

BEM results (-0.4452, -1.4709 ) (-1.4334, -0.8024 ) (-1.3629, 0.7606 ) 

F$) Semi-analytical ( 1.0144, 1.9740 ) ( 3.0406, 1.6594 ) ( 3.9052, -2.4883 
BEM results ( 1.0261, 1.9702 ) ( 3.0451, 1.6570 ) ( 3.8702, -2.4750 

FL2’ Semi-analytical ( 0.5719, 0.4994 ) ( 1.6050, 0.8629 ) ( 2.5529, -1.7233 
BEM results ( 0.5808, 0.4991 ) ( 1.6116, 0.8552 ) ( 2.5071, -1.7144 

Fi2) Semi-analytical (-0.0020, -0.4047 ) (-0.0690, -0.3319 ) (-0.4941, 0.2319 
BEM results (-0.0026, -0.4084 ) (-0.0695, -0.3347 ) (-0.4960, 0.2331 

TABLE 3. Components of second-order surge and heave forces on a truncated circular cyl 
normalized by pgaA2 ( b / a  = 4, h / a  = 10.0). 

ider, 

kb = 1.2 1.5 2.0 
Fi2) Exact ( 0.4535, -0.1708) ( 0.4138, -0.1033) ( 0.4062, -0.0358) 
F,iz) Approx. ( 0.4208, -0.2799) ( 0.3736, -0.1379) ( 0.4018, -0.0230) 

lFi2)I Exact 0.4843 0.4265 0.4077 
Approx. 0.5054 0.3982 0.4025 

Fj2) Exact ( -0.0986, -0.1683) ( -0.0988, -0.2684) ( -0.0582, -0.2195) 
F!z) Approx. ( -0.1084, -0.1775) ( -0.1101, -0.2858) ( -0.0993, -0.2198) 

IF;’) I Exact 0.1951 0.2860 0.2271 
I I Approx. 0.2080 0.3063 0.2273 

Mf) Exact ( 0.3445, -0.5021) ( 0.3053, -0.5018) ( 0.3073, -0.4137) 
MF) Approx. ( 0.3183, -0.5576) ( 0.2682, -0.5175) ( 0.2983, -0.4073) 

jMf)I Exact 0.6089 0.5874 0.5 153 
(My)I Approx. 0.6420 0.5828 0.5049 

TABLE 4. Comparison of approximate solution with exact solution for second-order mean force 
in surge and total time-varying second-order forces in surge, heave, and pitch. Forces and pitch 
moment are normalized by pguA2 and pguA2b respectively ( ka = 0.5, h / a  = 20.0). 

5.2. Comparison with results from the boundary-element method 
In order to validate the algorithm, we compare the semi-analytical results for compo- 
nents of second-order surge and heave forces on a truncated cylinder ( b / a  = 4, h/a  = 
10.0) with numerical results obtained by using the computer program DIFFRACT based 
on a higher-order boundary-element method (Eatock Taylor & Chau 1992). Table 
3 gives the real and imaginary parts (real, imag) for these results for three different 
frequencies. For the results from the boundary element method (designated BEM), 
360 quadratic elements were used in each quadrant (Nc  x N,  = 10 x 15 elements on 
the surface of the cylinder, N, x N ,  = 10 x 15 elements on the water plane area, and 
N, x N R  = 10 x 6 elements on the cylinder bottom, N, N ,  N, NR being the number of 
elements in the circumferential direction, in the radial direction on the free surface, 
in the vertical direction along the cylinder, and in the radial direction on the bottom 
surface respectively). Advantage was taken of the two planes of symmetry. It can 
be seen that good agreement is obtained between the semi-analytical and the BEM 
results. 
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ka 
FIGURE 2. Variation with ka of magnitudes of total dimensionless time-varying second-order surge 
(- ) and heave (- - -) forces; o symbol shows BEM results based on the mesh described in 
table 3 ( h/a  = 10.0, b/a = 4.0). 

5.3. Comparison of results from exact and approximate semi-analytical solutions 
In order to assess the validity of the approximate solution given in $4, we tabulate a set 
of results from the exact method and the approximate method. The total time-varying 
second-order forces in surge, heave and pitch for three different dimensionless draughts 
kb are given in table 4. This shows that the accuracy of the approximate solution 
is satisfactory even for a moderate draught. The relative error in magnitudes arising 
from the approximation is generally less than 7% for kb 2 1.2. More comparisons of 
the exact solution with the approximate solution are given in 995.4 and 5.5. 

5.4. Results for second-order forces and moments under various conditions 
We can now consider the effects of different factors on the total time-varying second- 
order forces and the moment. Figure 2 shows the variation with ka of the magnitudes 
of the forces in surge and heave for a particular configuration. For comparison, also 
presented are the results obtained by using the computer program DIFFRACT. It is 
seen that the surge force incresases quickly with increasing ka. The variation of heave 
force, however, is comparatively small. 

Figure 3(a) shows the influence of non-dimensional water depth kh on these forces 
and the moment. Results from the semi-analytical solution, shown as lines, are 
compared with results obtained by using the approximate method, shown as plotting 
symbols. The agreement in heave is very good over the whole range of kh considered 
here. For kh 2 5.0, good agreement is also reached for surge and pitch. It is also seen 
from the figure that the influence of kh on the second-order forces is fairly small. 

Results showing the variation with non-dimensional draught kb are given in figure 
3(b), with the same comparisons as in figure 3(a). We see that for kb > 1.2, the 
agreement between exact and approximate solutions is very good. By comparing 
figures 3(a) and 3(b), we find that the influence of kb on the second-order forces is 
much stronger than that of kh, especially in the case of the heave force. 

Figure 3(c) illustrates the comparison between the exact and approximate solutions 
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FIGURE 3. Variation with (a) kh, (b)  kb and (c) ka of magnitudes of total dimensionless time-varying 
second-order forces and moment: __ , surge force; - - - , heave force; - .  - .  -, pitch moment. 
0, x, +, denote results calculated using the approximate method. 

for the second-order forces and moment over a range of ka while keeping h/a  and 
b/a constant (h /a  = 20.0,b/a = 3.0). Again, the agreement in heave is always very 
good. For these specific values of h / a  and b/a,  when ka > 0.5, results from exact and 
approximate solutions are very close to each other for all the three force components. 

The vertical distributions of the magnitude of the first-order and second-order 
surge forces per unit length are shown in figure 4 for ka = 0.4 and ka = 1.0, with 
h/a = 20. Results for a bottom-seated circular cylinder with the same ka and kh are 
also presented for comparison. In the case of ka = 1.0 and kh = 20.0, both first- 
order and second-order surge forces (per unit length) are very close for a truncated 
cylinder and a bottom-seated cylinder. In the case of ka = 0.4 and k h  = 8, there is 
a significant difference in the first-order surge force between the two cylinders at the 
position near the bottom of the truncated cylinder ( z  = -b), showing the effect of 
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0 0.2 0.4 0.6 0.8 1.0 0 
-zh 

FIGURE 4. Variation with z / b  of magnitudes of first- and second-order surge forces per unit length 
of the cylinder surface: (a) ka = 0.4,kh = 8; (b) ka = 1.0, kh = 20.0. x, + denote results for a 
bottom-seated cylinder with the same ka and kh (b /a  = 3.0 h / a  = 20.0). 

~~ 

0 0.2 0.4 0.6 0.8 1.0 
8ln 

FIGURE 5. Magnitudes of first and second-order free-surface elevation on the waterline for two 
different ka. - , I@)/Al; - - -, 1$2)a/A2(; - .  - .  -, l$)a/A21; ...."-; $2)a/A2. Symbols denote 
results for a bottom-seated cylinder with the same ka and kh. 8 = 180 corresponds to the side facing 
the incoming wave. (a) ka = 0.4; (b) ka = 0.8. 

the boundary condition on the cylinder bottom. For the time-varying second-order 
force, the biggest difference occurs near the free surface. Over most of the depth of 
the truncated cylinder, the difference with the surge force distribution on the bottom- 
seated cylinder is very small. For the second-order mean force, there is no significant 
difference along the whole length of the cylinder. 
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-2 

I I 
-4 -2 0 2 4 

x/a 
FIGURE 6. Contours of magnitudes of first-order free-surface elevation (normalized by the wave 
amplitude A )  for ka = 0.4, k h  = 8.0. (a) Truncated cylinder with b/a  = 3.0; ( b )  difference in 
amplitudes between the truncated cylinder and a bottom-seated cylinder in the same depth of water. 
Wave direction is from left to right. 
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FIGURE 7. Contours of magnitudes of total time-varying second-order free-surface elevation (nor- 
malized by the wave amplitude A )  for ka = 0.4, kh = 8.0. (a) Truncated cylinder with b / a  = 3.0; 
( b )  difference in amplitudes between a truncated cylinder and a bottom-seated cylinder in the same 
depth of water. Wave direction is from left to right. 
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FIGURE 8. Contours of maximum total free-surface elevation (normalized by the wave amplitude 
A )  for ka = 0.4, kh = 8, b/a = 3.0, A / a  = 0.3. Wave direction is from left to right. 

5.5. Wave run-up on the body surface and the ,free-surface elevation 
We next investigate the wave elevation in the vicinity of the cylinder. Figure 5 shows 
the dimensionless amplitudes of first-order and components of second-order wave run- 
up along the waterline for two different incident wavenumbers. For comparison, results 
for a bottom-seated cylinder (with the same ka and kh)  are also presented. Perhaps it 
is suprising that even for fairly small ka (e.g. ka = 0.4), the differences in both first- 
order and each component of second-order wave run-up between a truncated cylinder 
and a bottom-seated cylinder (with the same ka and kh)  is negligibly small, indicating 
that the lower part of a bottom-seated cylinder does not make much contribution to 
the potentials at the waterline. The contour plots in figure 8 and figure 9 also show 
a similar phenomenon for the free-surface elevation near the cylinder. Figure 6(a) 
illustrates the amplitude of first-order free-surface elevation for a truncated cylinder 
(b /a  = 3, kb = 1.2, kh = 8). Figure 6(b)  shows the difference between the results 
for the truncated cylinder (figure 6a) and those for a bottom-seated cylinder in the 
same water depth. It is clear that the results for the two different geometries are 
remarkably close to each other. This implies that even with a moderate draught kb, 
the contribution of the lower part of a structure to the first-order potential on the free 
surface is relatively small. Figure 7 shows corresponding results for the amplitudes 
of the second-order free-surface elevation, again normalized by A and for A / a  = 0.1. 
The contribution from the lower part of the bottom-seated cylinder is again seen 
to be small. These conclusions are very important in simplifying the second-order 
analysis of complex structures such as tension leg platforms. 

Figure 8 shows the contours of maximum normalized free-surface elevation at the 
same frequency, but at a higher incident wave amplitude ( A / a  = 0.3). The surface 
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FIGURE 9. Isometrics of maximum free-surface elevation for ka = 0.8, h/a  = 4, A / a  = 0.4: (a) 
prediction by linear theory; (b) prediction by first- and second-order theory. Wave direction is from 
left to right. 

contours have been evaluated as follows. At each spatial position, the sum of the 
linear component, the mean second-order component, and the component at twice the 
wave frequency, was calculated at 360 time steps during the wave period, and divided 
by the amplitude A of the incident wave. The maximum of the resulting 360 values 
was then used to define the surface at that position. The figure therefore provides an 
indication of the maximum elevation which would be observed in the vicinity of the 
cylinder; but it should be emphasized that the maxima at different positions occur at 
different times in the wave cycle. (If the same procedure were adopted for the linear 
component, the result would of course be identical to the contours of free-surface 
amplitude given in figure 6a.) 

Similar results are shown as isometrics in figure 9, but now for a higher frequency 
corresponding to ka = 0.8. Figure 9(a) gives the predicted normalized elevation 
based on linear theory. The maximum normalized elevation shown in figure 9(b) 
includes both first- and second-order effects, for the case A / a  = 0.4. The second-order 
contributions are seen to cause substantial local increases in the maximum wave 
elevation, for example in the vicinity of the upstream face of the truncated cylinder. 

6. Conclusions 
A complete semi-analytical solution has been given for second-order diffracted po- 

tential and associated quantities for a truncated circular cylinder in water of uniform 
finite depth. This solution provides an efficient and accurate (in the context of the 
second-order theory) means for analysing second-order wave loads as well as the free- 
surface elevation around a truncated vertical cylinder. Extension of this solution to a 
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third-order analysis would be straightforward, though much more complicated, and 
could provide a tool for estimating ringing loads. (Malenica & Molin 1994 have al- 
ready considered the third-order problem for the bottom-seated circular cylinder, using 
a different approach). Another development would be to extend this solution to study 
second-order interaction between waves and multiple truncated cylinders, by adopting 
an appropriate interaction theory. This could lead to an efficient tool for second-order 
diffraction analysis of realistic offshore structures. Numerical results based on the 
present analysis show that in many cases the second-order loads on, and the free 
surface around, a truncated vertical cylinder are very close to those of a bottom-seated 
cylinder having the same radius in the same water depth, as long as in the latter case 
integration for the forces is carried out only on the upper part of the cylinder (i.e. the 
integrated height equals the draught of the truncated cylinder). This important conclu- 
sion suggests the route to development of an effective approximate solution for second- 
order potential and forces. By applying this idea to the multiple-cylinder interaction 
problems, such an approximate solution could dramatically reduce the computational 
effort in the second-order analysis for a structure such as a tension leg platform. 

This work forms part of the research programme ‘Uncertainties in Loads on 
Offshore Structures’ sponsored by EPSRC through MTD Ltd and jointly funded 
with: Amoco (UK) Exploration Company, BP Exploration Operating Co. Ltd., 
Brown & Root, Exxon Production Research Company, Health and Safety Executive, 
Norwegian Contractors a.s., Shell UK Exploration and Production, Den Norske Stats 
Oljeselskap as., Texaco Britain Ltd. 

Appendix A. Expressions for [Cf I], [DL’)], { Ei’)} 
The terms of the matrices for the first-order analysis are as follows: 

2(-l)“kP,(ka) sinh(kd) 
d(k2 + Am2) cosh(kh) E,?(m) = (rn = 0, 1,2,. . .). 
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The terms of the matrices for the second-order analysis can be shown to be 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

n sinh(k0d) c;2)(o,o) = 
2(koa)(koh) [yo(ko)l ’ 

n sin(k,d) 

AJA(A,a) (-1)‘ sinh(k0d) 

AJA(A,a) (-l)‘+’ sin(k,d) 

cp(rn,O) = (m = 1,2,. . .), 
2(kma)(krnh)bm(km)I ‘I2 ’ 

Ch2)(0,1) = 

CA*)(rn,l) = 

r,(Aia) [k; + ~ : l ~ [ ~ o ( k o ) l ” 2 ~  

J,(nla) (h2 - kni2)h[ym(km)]1/2’ 
2 H,(ba)  sinh(k0d) 

Di2)(0,O) = _~ 
kod HL(ko4 [Yo(ko)l’/2’ 

(2) 2ko H,(koa) (-l), sinh(k0d) D, (m,O)= -~ 
d HL(koa) (1; + k~)[~o(ko)l”~’  

2Kn( kra) sin( kid) 
KL(kra) krd[~(k/)l’/~ ’ 

2kl K , ( k p )  (-l)’+’ sin(k[d) 

D!?(O, 1) = 

DK)(rn, 1) = -___ 
d KL(kra) (2; - h2)4 [yr(ki)11/2’ 

The functions yo  and ym are as defined in (2.15) and (2.16). 
There is no convenient closed-form expression for EL2)(m). To evaluate these terms, 

we use a simple approximate quadrature. We divide the interval [-h,-b] into Nj 
smaller intervals, assuming that in the j th  interval, ( z E [-Az(j - 1) - b, -jAz - b], 
Az = d/Nj), &,)(a, z )  varies linearly with z. Therefore 

(Z j  - z). (B9) h n , j + l  - h n , j  

Az 
The equation for Ei2)(rn) then can be written as 

40n(a, Z )  = h n , j  + 

where 
aj  = -(b + ~ A z ) ,  bj = -b - ( j  - l)Az, 

Hence we obtain 

+ -P.(b2 - a;) , 1 N i  U j )  1 [ I Ih 2h 1 
EA2)(0) = 

j=l 

+ bj))  - sin(A,(h + aj))] + bj sin(A,(h + bj)) 
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Appendix C. Approximate expressions for quadratic components of the 
second-order forces on a truncated vertical cylinder 

We give here expressions for quadratic components (mean and time-varying) of 
the second-order forces on a truncated vertical cylinder, due to the contribution 
of the approximated first-order potential. The surge force and pitch moment are 
considered, the latter being taken about an axis through the cylinder bottom. Since 
the quadratic component in heave is generally negligibly small, compared with the 
dynamic component due to the contribution of the second-order potential, it is not 
considered here. 

The second-order mean surge force is 
-(2) 

. (C1) 
4 sinh(2kh) - sinh(2kd) + .  Fx - 

~ pgaA2 - ~ ~ ~ ( k a ) ~  [ 
The second-order mean pitch moment is 

sinh(2kh) 

where 

(C3) 
1 
4 

2kb sinh(2kh) - cosh(2kh) + cosh(2kd) 
8k2b2 

Z(kh) = - + 
The second-order time-varying quadratic surge force is 

(-l)n { [ + sinh(2kh) 
sinh(2kh) - sinh(2kd) 

n=O 

2kb I). (C4) 
2kb n(n + 1) sinh(2kh) - sinh(2kd) ] i- (ka)2 [ sinh(2kh) + sinh(2kh) sinh( 2kh) 

- 

The second-order time-varying quadratic pitch moment is 

4i 2kb )Z(kh) -11). (C5) 
m 

YY - 
2 

M(2) 

pgaA2b - mc n=O 
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